

Welcome to Esquio

[image: _images/xabaril.png]
Esquio is a Feature Toggles (aka Feature Flags) [https://martinfowler.com/articles/feature-toggles.html] and A/B testing library for ASP.NET Core 3.0. Feature toggling is a powerful technique that allows developers to deliver new functionality to users without changing code. Feature toggles provide an alternative to mantaining multiple branches (aka feature branches), so any feature can be tested even before it is completed and ready for the release. We can release a version of our product without production-ready features. These non production-ready features are hidden (toggled) for the broader set of users but can be enabled to any subset of testing or internal users we want to try out the features. We can even use feature toggling to enable or disable features during runtime.

Esquio is built with the possibility of use it not only in ASP.NET Core 3.0 in mind, but making it possible to use also in other .NET Core 3.0 projects like workers, webjobs, classlibraries, … almost any kind of .NET Core 3.0 project. For the Esquio team, this is not only about using a library, but using a full Feature Toggles framework for all of our projects, and as a delivery mechanism.

We believe Feature Toggling is, somekind, a way of delivering software, making it a first class citizen in your DevOps processes, therefore we are working hard towards integrating it, via extension and pipelines tasks, with Azure DevOps, so you can use Esquio Toggles directly in your releases and delivery flows. Having a full toggle delivery experience.

Esquio Azure DevOps extensions are built in top of the Esquio API, in the case you need to integrate Esquio with any other tool, you can always use this API to handle the toggles.

Additionally, if you need it, Esquio has a full UI developed, so you can be able to handle all your Toggles in it, making it fairly simple to use and manage.

Terminology

The documentation and object model use a certain terminology that you should be aware of.

Product

Allows you to manage multiple different software projects, for example, one solution can contains a web application and windows application that need the same set of features. Each product has its own unique set of features.

Feature

Features are characteristics of your product that describe its appearance, components, and capabilities. A feature is a slice of business functionality that has a corresponding benefit or set of benefits for that product’s end user. Each feature has its own set of toggles.

Toggle

Toggles allows you to control when a feature is enabled or not. Esquio provides many toggles out-of-the-box such us percentage rollouts, target specific users or environments, expiration dates or even hit the ‘kill’ switch for a feature programmatically.

Parameter

Parameters are variables that toggles need in their validation process.

Deployment

Deployments are the different environments or tenants where you deploy a Product.

Store

A mechanisim to allow you to store persistent the Esquio’s object model such us products, features, toggles, parameters. Esquio provides out of the box two stores:

	ASP.NET Core JSON Configuration Provider.

	Http Provider to use with Esquio UI.

Contributing

When contributing to this repository, please first discuss the change you wish to make via issue,
email, or any other method with the owners of this repository before making a change.

Please note we have a code of conduct, please follow it in all your interactions with the project.

Pull Request Process

	Ensure any install or build dependencies are removed before the end of the layer when doing a
build.

	Update the README.md with details of changes to the interface, this includes new environment
variables, exposed ports, useful file locations and container parameters.

	Increase the version numbers in any examples files and the README.md to the new version that this
Pull Request would represent. The versioning scheme we use is [SemVer](http://semver.org/).

	You may merge the Pull Request in once you have the sign-off of two other developers, or if you
do not have permission to do that, you may request the second reviewer to merge it for you.

Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience,
nationality, personal appearance, race, religion, or sexual identity and
orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at [INSERT EMAIL ADDRESS]. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
available at version [http://contributor-covenant.org/version/1/4]

homepage [http://contributor-covenant.org]

version [http://contributor-covenant.org/version/1/4]

Getting started with Esquio in .NET Core

In this article, we are going to see how easy it is to use Esquio in your .NET Core application using the NuGet packages provided by Xabaril.

> In samples/GettingStarted.ConsoleApp [https://github.com/Xabaril/Esquio/tree/master/samples/GettingStarted.ConsoleApp] you’ll find a complete Esquio example in ASP.NET Core.

Create a folder for your new project

Open a command prompt an run:

mkdir consoleapp
cd consoleapp

Create the project

To create the project type the following command using the .NET Core CLI:

dotnet new console

Installation

To install Esquio type the following command:

dotnet package add Microsoft.Extensions.DependencyInjection
dotnet package add Microsoft.Extensions.Logging.Console
dotnet package add Microsoft.Extensions.Configuration.Json
dotnet package add Esquio.Configuration.Store
dotnet restore

or using Powershell or Package Manager:

Install-Package Microsoft.Extensions.DependencyInjection
Install-Package Microsoft.Extensions.Logging.Console
Install-Package Microsoft.Extensions.Configuration.Json
Install-Package Esquio.Configuration.Store

Setup

In the Program.cs, change the Main method to async:

static async Task Main(string[] args)

Import the configuration namespace:

using Microsoft.Extensions.Configuration;

Create the configuration object:

var configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json")
 .Build();

Add a appsettings.json file to the project and add the content below:

{
 "Esquio": {
 "Products": [
 {
 "Name": "Console",
 "Features": [
 {
 "Name": "Colored",
 "Enabled": true,
 "Toggles": []
 }
]
 }
]
 }
}

Register the Esquio services and the configuration store:

var services = new ServiceCollection()
 .AddLogging(configure => configure.AddConsole())
 .AddEsquio()
 .AddConfigurationStore(configuration, "Esquio")
 .Services;

Build the service provider:

var serviceProvider = services.BuildServiceProvider();

Obtain a context for the IFeatureService:

var featureService = serviceProvider.GetService<IFeatureService>();

Check if “Colored” feature for the “Console” project is enabled and set the background color of the console to blue:

if (await featureService.IsEnabledAsync("Colored", "Console"))
{
 Console.BackgroundColor = ConsoleColor.Blue;
}

Finally, write a message to check it:

Console.WriteLine("Welcome to Esquio!");
Console.Read();

Test the application

Test the app on your computer running:

dotnet run

[image: ../_images/consoleapp.png]
To disable the feature, change the appsettings.json:

"Enabled": false

And test again the app:

[image: ../_images/consoleapp2.png]

Getting started with Esquio in ASP.NET Core

In this article, we are going to watch an incremental sample to show how to use to use Esquio in your ASP.NET Core application.

Intro

> In samples/GettingStarted.AspNetCore.Intro [https://github.com/Xabaril/Esquio/tree/master/samples/GettingStarted.AspNetCore.Intro] you’ll find this example in ASP.NET Core.

First, create a new project empty:

dotnet new web -n GettingStarted.AspNetCore.Intro

Install Esquio.AspNetCore package, typing the following command using the .NET Core CLI:

dotnet add package Esquio.AspNetCore

or using Powershell or Package Manager:

Install-Package Esquio.Configuration.Store
Install-Package Esquio.AspNetCore

or install via NuGet.

In the ConfigureServices method of Startup.cs, register the Esquio services:

services
 .AddEsquio()
 .AddAspNetCoreDefaultServices();

AddEsquio registers the default services for Esquio
AddAspNetCoreDefaultServices register the default ASP.NET Core services for Esquio (i.e. claims or environment services)

Setting ConfigurationStore

Let’s start using our appsettings.json to configurate Esquio. We don’t recommend this store for production, only for small projects or for testing purposes.

Install Esquio.AspNetCore package, typing the following command using the .NET Core CLI:

dotnet add package Esquio.Configuration.Store

or using Powershell or Package Manager:

Install-Package Esquio.Configuration.Store

or install via NuGet.

And register the specific service for this store:

public class Startup
{
 IConfiguration _configuration;

 public Startup(IConfiguration configuration)
 {
 _configuration = configuration;
 }

 public void ConfigureServices(IServiceCollection services)
 {
 services
 .AddEsquio()
 .AddAspNetCoreDefaultServices()
 .AddConfigurationStore(_configuration);
 }

AddConfigurationStore method registers the configuration store to use, in this case, based on the default configuration system of ASP.NET Core [https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration/?view=aspnetcore-2.2]

So, let’s open our appsettings.json file. To help us in this task, we can use the Esquio schema, selecting it on the Schema options:

[image: ../_images/esquioschema.png]
Add the content below to your appsettings.json file:

{
 "Esquio": {
 "Products": [
 {
 "Name": "default",
 "Features": [
 {
 "Name": "HiddenGem",
 "Enabled": true,
 "Toggles": []
 }
]
 }
]
 }
}

By default, Esquio will be the root element. However, you could change it on adding the configurationStore:

.AddConfigurationStore(_configuration, key: "MyNewCustomRoot");

With this configuration, we are defining a new feature named HiddenGem, initially set to enabled, but with no toggle on it.

In order to test it, let’s use the current endpoint already defined on the method Configure on the class Startup. We can attach feature metadata to an endpoint using the route mappings configuration fluent API RequireFeature method:

app.UseEndpoints(endpoints =>
{
 endpoints.MapGet("/", async context =>
 {
 await context.Response.WriteAsync("Hello World!");
 }).RequireFeature("HiddenGem");
});

This method will filter if the endpoint can be executed depending on feature(s) state. If the configured feature is enabled this endpoint is executed, if not, by default a NotFound result is obtained.

So, if we run the project with this configuration, we will reach this endpoint:

[image: ../_images/tutorial-intro-success.png]
However, let’s modify the configuration file again, setting Enabled property to false, and refresh the browser:

"Features": [
 {
 "Name": "HiddenGem",
 "Enabled": false,
 "Toggles": []
 }
]

[image: ../_images/tutorial-intro-notfound.png]

Creating a client endpoint

> In samples/GettingStarted.AspNetCore.ClientEndpoint [https://github.com/Xabaril/Esquio/tree/master/samples/GettingStarted.AspNetCore.ClientEndpoint] you’ll find this example in ASP.NET Core.

You can query Esquio with your own api request. To enable this endpoint, from the previous code, let’s come back to the Configure method of the Startup class:

app.UseEndpoints(endpoints =>
{
 endpoints.MapGet("/", async context =>
 {
 await context.Response.WriteAsync("Hello World!");
 }).RequireFeature("HiddenGem");

 endpoints.MapEsquio();
});

With MapEsquio a new endpoint is mapped that can be used to get the activation state of any configured feature. An Uri pattern can be specify, if not, esquio would be the default pattern.

So, after running your project, you can open a browser and go to /esquio?featureName=HiddenGem:

[image: ../_images/esquio-client-endpoint.png]

Exploring more options

> In samples/GettingStarted.AspNetCore.IntroOptions [https://github.com/Xabaril/Esquio/tree/master/samples/GettingStarted.AspNetCore.IntroOptions] you’ll find this example in ASP.NET Core.

Let’s explore some configuration options that Esquio provides us.

We can configurate what would be the result of evaluating a feature that cannot be found or whom evaluation returns an error.

So, let’s back again to the ConfigureServices and set the behaviour of NotFound and OnError to SetDisable. This is the value by default, so for the moment these configuration doesn’t change anything. Add also a new fallback endpoint to verify if the fallback is executed or not:

services
 .AddEsquio(options =>
 {
 options.ConfigureNotFoundBehavior(NotFoundBehavior.SetDisabled);
 options.ConfigureOnErrorBehavior(OnErrorBehavior.SetDisabled);
 })
 .AddEndpointFallback(new RequestDelegate(async context =>
 {
 await context.Response.WriteAsync("Hello World! , the feature is disabled and endpoint fallback is executed!");
 }))

On Configure method, let’s modify the endpoint to call to require a feature that has not been configured (NotExistingFeature instead of HiddenGem):

app.UseEndpoints(endpoints =>
{
 endpoints.MapGet("/", async context =>
 {
 await context.Response.WriteAsync("Hello World!");
 }).RequireFeature("NonExistingFeature");
});

> You can specify many features separated by comma, so you can restrict access to the endpoints if a feature or a group features are enabled or not.

If you launch again the project, you will get the fallback message:

[image: ../_images/tutorial-intro-fallback.png]
We could also use any already defined fallback actions, instead of creating the request delegate directly. In this case, on fallback we want to be redirected to Google page:

.AddEsquio(options =>
{
 options.ConfigureNotFoundBehavior(NotFoundBehavior.SetDisabled);
 options.ConfigureOnErrorBehavior(OnErrorBehavior.SetDisabled);
})
.AddEndpointFallback(EndpointFallbackAction.RedirectTo("https://www.google.com"))

In case we would like Esquio to evaluate as enabled a feature that doesn’t exist, we can change NotFound behaviour:

services
 .AddEsquio(options =>
 {
 options.ConfigureNotFoundBehavior(NotFoundBehavior.SetEnabled);
 options.ConfigureOnErrorBehavior(OnErrorBehavior.SetDisabled);
 })

If we run the project, we get again our normal endpoint:

[image: ../_images/tutorial-intro-success.png]

ASP.NET Core Web Apps

When working with Esquio you can attach feature metadata to an endpoint. We do this using the route mappings configuration fluent API RequireFeature method:

app.UseEndpoints(routes =>
{
 routes.MapControllerRoute(
 name: "default",
 pattern: "{controller=Match}/{action=Index}/{id?}").RequireFeature("HiddenGem");
});

You can specify many features separated by comma, so you can restrict access to the endpoints if a feature or a group features are enabled or not.

If you want more fine-grained control over your Controllers, Esquio provides a FeatureFilter attribute that forces you to supply a comma separated list of features names. You can specifies that access to a controller or action method is restricted to users if theses features are enabled or not:

[FeatureFilter(Names = Flags.MinutesRealTime)]
public IActionResult DetailLive()
{
 return View();
}

Also, you can use FeatureFilter to act as an Action constraint. You can create two Actions with the same ActionName and decorate one with FeatureFilter attribute to match the action only when the predefined feature name values are enabled or not.:

[ActionName("Detail")]
public IActionResult DetailWhenFlagsIsNotActive()
{
 return View();
}

[FeatureFilter(Names = Flags.MinutesRealTime)]
[ActionName("Detail")]
public IActionResult DetailWhenFlagsIsActive()
{
 return View();
}

Sometimes you will need to configure a fallback action. Esquio provides an AddEndpointFallback method that accepts a RequestDelegate in order to configure your custom fallback:

services
 .AddEsquio()
 .AddAspNetCoreDefaultServices()
 .AddConfigurationStore(Configuration, "Esquio")
 .AddEndpointFallback((context) =>
 {
 context.Response.StatusCode = StatusCodes.Status404NotFound;

 return Task.CompletedTask;
 })

Out-of-the-box Esquio provides EndpointFallbackAction class that defines common fallback actions to be used when no matching endpoints found:

	Redirect result to MVC action:

public static RequestDelegate RedirectToAction(string controllerName, string actionName)

	Redirect result:

public static RequestDelegate RedirectTo(string uri)

	NotFound status response:

public static RequestDelegate NotFound()

ASP.NET Core MVC

With ASP.NET MVC Core we can use the FeatureTagHelper inside our Razor views to show or hide Razor fragments depending on feature is enabled or not.

<feature names="@Flags.MatchScore">
 @match.ScoreLocal - @match.ScoreVisitor
</feature>

In this example, if the feature MatchScore is enabled, you can show a new design of the match score. Names property is comma-separated list of feature names to be evaluated. If any feature is not active, the tag helper will suppress the content.

The FeatureTagHelper supports Include and Exclude attributes:

	Include: A comma-separated list of feature names to be evaluated. If any feature is not active, this tag helper suppresses the content.

	Exclude: A comma-separated list of feature names to be evaluated. If any feature is active, this tag helper suppresses the content.

SPA and Native Apps

Single-Page-Applications and native apps are becoming the new wave for modern applications. The challenge with feature flags in these kinds of applications is handling the state transformations. In case of SPAs the changes in a webpage’s DOM and the platform specific controls in native apps.
We will need an endpoint to query if a feature or a set of features are enabled or not in order make real time personalization in the UX for example.

To enable this endpoint, in the Configure method, insert the middleware to expose the Esquio endpoint:

app.UseEndpoints(routes =>
{
 routes.MapEsquio(pattern: "esquio");
});

Now you can start your application and check out your features at http(s)://server:port/esquio?featureName=Colored:

[
 {
 "enabled": true,
 "name": "Colored"
 }
]

To disable the feature, change the appsettings.json:

"Enabled": false,

Test again the app:

[
 {
 "enabled": false,
 "name": "Colored"
 }
]

Getting started with Esquio in .NET Core Worker

In this article, we are going to see how easy it is to use Esquio in your .NET Core worket using the NuGet packages provided by Xabaril.

> In samples/GettingStarted.Worker [https://github.com/Xabaril/Esquio/tree/master/samples/GettingStarted.Worker] you’ll find a complete Esquio example in a .Net core worker.

In this sample, a different message will be shown according with the state of the feature named ComputeMatch. This feature will be store in the configuration.

Create the project

To create the project, type the following command using the .NET Core CLI:

dotnet new worker -n GettingStarted.Worker
cd GettingStarted.Worker

Installation

To install Esquio, type the following command:

dotnet add package Esquio
dotnet add package Esquio.Configuration.Store
dotnet restore

or using Powershell or Package Manager:

Install-Package Esquio
Install-Package Esquio.Configuration.Store

> In addition to Esquio package, it will install the specific package for using configuration as the Esquio store.

Setup

In the Program.cs, modify the CreateHostBuilder to register Esquio services and the specific configuration store:

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureServices((context, services) =>
 {
 services
 .AddEsquio()
 .AddConfigurationStore(context.Configuration, key: "Esquio");

 services.AddHostedService<Worker>();
 });

Modify the appsettings.json file to the project and add the content below:

"Esquio": {
 "Products": [
 {
 "Name": "default",
 "Features": [
 {
 "Name": "ComputeMatch",
 "Enabled": false,
 "Toggles": []
 }
]
 }
]
}

Let’s consume this feature. In the Worker.cs, create a new property scopeFactory and change the Worker method to receive it as a parameter:

private readonly ILogger<Worker> _logger;
private readonly IServiceScopeFactory _scopeFactory;

public Worker(IServiceScopeFactory scopeFactory, ILogger<Worker> logger)
{
 _scopeFactory = scopeFactory;
 _logger = logger;
}

Import the DependencyInjection extension namespace:

using Microsoft.Extensions.DependencyInjection;

Change the method ExecuteAsync for creating a new context and require a IFeatureService:

protected override async Task ExecuteAsync(CancellationToken stoppingToken)
{
 while (!stoppingToken.IsCancellationRequested)
 {
 using (var scope = _scopeFactory.CreateScope())
 {
 var featureService = scope.ServiceProvider
 .GetRequiredService<IFeatureService>();
 }

Import the Esquio.Abstractions namespace for resolving IFeatureService:

using Esquio.Abstractions;

Using this service, you can implement the logic to show a different message on the console according with the feature in several ways.

You can use it querying the feature and receiving a boolean result depending on its state:

protected override async Task ExecuteAsync(CancellationToken stoppingToken)
{
 while (!stoppingToken.IsCancellationRequested)
 {
 using (var scope = _scopeFactory.CreateScope())
 {
 var featureService = scope.ServiceProvider.GetRequiredService<IFeatureService>();

 if (await featureService.IsEnabledAsync("ComputeMatch"))
 {
 _logger.LogInformation("Worker running with ComputeMatch Feature enabled at: {time}", DateTimeOffset.Now);
 }
 _logger.LogInformation("Worker running at: {time}", DateTimeOffset.Now);

 await Task.Delay(1000, stoppingToken);
 }
 }
}

Or using the method Do where you can explictly define both states in different actions:

protected override async Task ExecuteAsync(CancellationToken stoppingToken)
{
 while (!stoppingToken.IsCancellationRequested)
 {
 using (var scope = _scopeFactory.CreateScope())
 {
 var featureService = scope.ServiceProvider
 .GetRequiredService<IFeatureService>();

 await featureService.Do("ComputeMatch",
 enabled: () =>
 {
 _logger.LogInformation("Worker running with ComputeMatch Feature enabled at: {time}", DateTimeOffset.Now);
 },
 disabled: () =>
 {
 _logger.LogInformation("Worker running at: {time}", DateTimeOffset.Now);
 });

 await Task.Delay(1000, stoppingToken);
 }
 }
}

Test the application

Test the app on your computer running:

dotnet run

[image: ../_images/worker-disabled.png]
To enable the feature, change the appsettings.json:

"Enabled": true

And test again the app:

[image: ../_images/worker-enabled.png]

Getting started with Esquio Azure DevOps tasks

In this article, we are going to see how to configure Esquio Azure DevOps tasks for your pipelines.

> In samples/WebApp [https://github.com/Xabaril/Esquio/tree/master/samples/WebApp] you’ll find a complete Esquio example in ASP.NET Core.

Setup

The first step is install the Esquio Azure DevOps Task from Visual Studio Marketplace [https://marketplace.visualstudio.com/items?itemName=xabaril.esquio*extensions] . There isn’t anything special needed, just install it as a normal Azure DevOps extension.

Once installed, you will have new elements in your Azure DevOps:

	Esquio Service Connection

	Esquio rollout task

	Esquio rollback task

	Esquio set parameter value task

Prerequisites

To be able to use Esquio tasks, we will need to setup a Esquio Service Connection [https://docs.microsoft.com/en-us/azure/devops/pipelines/library/service-endpoints?view=azure-devops&tabs=yaml] and to configure it you need to create an Esquio API key, to use it with the Esquio Service Connection.

Create Esquio API key

First of all you need to create an Esquio API key to create the Service Connection [https://docs.microsoft.com/en-us/azure/devops/pipelines/library/service-endpoints?view=azure-devops&tabs=yaml] it is easily created with the Esquio UI.

Open your current deployment of Esquio UI url in a browser, and once logged-in, click on your user name in the upper right corner.

[image: ../_images/user-private-token-menu.png]
Click on Get Private token and you will receive a confirmation window, and your token will be copied to the clipboard, so note it to paste it when configuring the Esquio Service Connection

[image: ../_images/token-confirmation.png]
Now you can continue to configure the Service Connection [https://docs.microsoft.com/en-us/azure/devops/pipelines/library/service-endpoints?view=azure-devops&tabs=yaml].

Setup Esquio Service Connection

Service Connection [https://docs.microsoft.com/en-us/azure/devops/pipelines/library/service-endpoints?view=azure-devops&tabs=yaml] are setup per project, so open your Azure DevOps settings page, and go to Service Connections, click on New service Connection and select Esquio API Connection

[image: ../_images/service-connection.png]
This will bring the Esquio API Connection configuration screen, here you need to setup three parameters:

	Connection name: To use it in the Azure DevOps tasks.

	Esquio API Url: The complete url in which yoy have your Esquio API.

	API token: The Esquio API key you have setup.

[image: ../_images/service-connection-form.png]
Once filled all the information, make sure it is correct, clicking on Verify connection and make sure it says Connection: Verified

[image: ../_images/service-connection-verified.png]
Now you have setup the Esquio Connection we will need to use for the tasks.

Esquio rollout task

This task allow us to enable a feature to everyone cleaning all the toggles.

If you are creating your Azure Pipelines with YAML it is better to use the YAML assistant as it will allow you to use the datasources for the picklists.

[image: ../_images/pipeline-assistant.png]
To setup the rollout task, look for Rollout feature with Esquio task:

[image: ../_images/rollout-blank.png]
We will configure three parameters:

	Esquio Service Endpoint: Select the previously created Esquio Service Connection.

	Esquio Product: From the list of products configured in Esquio.

	Esquio feature: Select, from the list of features.

The final YAML should be (with different ids) like this:

- task: esquio-rollout-feature@1
 inputs:
 EsquioService: 'Esquio'
 productId: '1'
 flagId: '1'

If you are using the classic pipelines (the visual ones), the setup is exactly the same.

Esquio rollback task

This task allow us to set a OffToggle for a feature, thus disabling it.

If you are creating your Azure Pipelines with YAML it is better to use the YAML assistant as it will allow you to use the datasources for the picklists.

[image: ../_images/pipeline-assistant.png]
To setup the rollout task, look for Rollback feature with Esquio task:

[image: ../_images/rollback-blank.png]
We will configure three parameters:

	Esquio Service Endpoint: Select the previously created Esquio Service Connection.

	Esquio Product: From the list of products configured in Esquio, select the one with the feature you want to setup the OffToggle.

	Esquio feature: Select, from the list of features, the one to setup the OffToggle.

The final YAML should be (with different ids) like this:

- task: esquio-rollback-feature@1
 inputs:
 EsquioService: 'Esquio'
 productId: '1'
 flagId: '1'

If you are using the classic pipelines (the visual ones), the setup is exactly the same.

Esquio set toggle parameter task

This task allow us to set a value for a particular parameter in a toggle, with this task you can setup any other type of toggle acepting parameters.

If you are creating your Azure Pipelines with YAML it is better to use the YAML assistant as it will allow you to use the datasources for the picklists.

[image: ../_images/pipeline-assistant.png]
To setup the rollout task, look for Set toggle parameter with Esquio task and select, using the picklists, the parameter for the feature toggle you want to set, and then fill-in the value you want to set for the parameter:

[image: ../_images/setparameter-blank.png]
We will configure six parameters:

	Esquio Service Endpoint: Select the previously created Esquio Service Connection.

	Esquio Product: From the list of products configured in Esquio.

	Esquio feature: Select, from the list of features, the one with the parameter you want to set the value.

	Esquio toggle: Select, from the list of toggles, the one with the parameter you want to set the value.

	Esquio parameter: Select, from the list of parameters for the previously selected toggle, the one you want to set the value.

	Esquio parameter value: Introduce manually the value you want to setup for the parameter.

The final YAML should be (with different ids) like this:

- task: set-toggle-parameter@1
 inputs:
 EsquioService: 'esquio'
 productId: '1'
 flagId: '2'
 toggleId: '14'
 parameterId: 'Percentage'
 parameterValue: '59'

If you are using the classic pipelines (the visual ones), the setup is exactly the same.

Getting started with Esquio monitoring & diagnostics

In this article, we are going to watch an incremental sample to show how to use to use Esquio in your ASP.NET Core application.

Intro

Application Insights

> In samples/GettingStarted.AspNetCore.Mvc.ApplicationInsights [https://github.com/Xabaril/Esquio/tree/master/samples/GettingStarted.AspNetCore.Mvc.ApplicationInsights] you’ll find this example in ASP.NET Core.

An easy way to discover what is happening in our application is using ApplicationInsights.

First, install Microsoft.ApplicationInsights.AspNetCore package, typing the following command using the .NET Core CLI:

dotnet add package Microsoft.ApplicationInsights.AspNetCore

or using Powershell or Package Manager:

Install-Package Microsoft.ApplicationInsights.AspNetCore

or install via NuGet.

On the Startup`class, modify your `ConfigureServices method:

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllersWithViews()
 .Services
 .AddEsquio(setup =>
 {
 setup.UseScopedEvaluation(useScopedEvaluation: true);
 })
 .AddAspNetCoreDefaultServices()
 .AddApplicationInsightProcessor()
 .AddConfigurationStore(Configuration);
}

> We set on the configuration ScopedEvaluation to use evaluation session, that is, to store feature evaluation results on the same execution scope. This ensures result consistency on the same scope. By default, a no evaluation holder is used and scoped evaluation results are never stored and reused.

To register ApplicationInsights telemetry and Esquio customized processor, we had just added the following extension:

.AddApplicationInsightProcessor()

Open this sample and launch it. It will open a very simple Mvc application.

[image: ../_images/ai-web-initial.png]
Let’s open ApplicationInsights watcher typing Application Insights Search on the Search field of your Visual Studio or clicking on View> Other Windows> Application Insights Search:

[image: ../_images/ai-menu-option.png]
In this sample, we are interested on the Request, so select only this option and click on Update button:

[image: ../_images/ai-request-update.png]
On the results, same requests should be shown. On the left, among the fields to refine by, you can see HiddenGem and PrivacyFeature:

[image: ../_images/ai-search.png]
Let’s go to the appsettings.json, enable the PrivacyFeature:

"Esquio": {
 "Products": [
 {
 "Name": "default",
 "Features": [
 {
 "Name": "PrivacyFeature",
 "Enabled": true,
 "Toggles": []
 },
 {
 "Name": "HiddenGem",
 "Enabled": true,
 "Toggles": []
 }
]
 }
]
}

Launch the application and open Application Insights Search again. A new value for PrivacyFeature filter appears.

In this way, you can filter among all your requests showing only the request when PrivacyFeature is enable. This can be very useful on canary release to be able to detect undesirable behaviours.

Dotnet Counter

> Counters [https://docs.microsoft.com/es-es/dotnet/core/diagnostics/dotnet-counters]

VisualStudio Diagnostics

PerfWatcher

Behaviors

Esquio allows you to configure their behaviors when a feature does not exists or fails during evaluation. You can configure these behaviors by modifying the Esquio setup.

OnErrorBehavior

There are three options to configure when a feature fails during evaluation:

	OnErrorBehavior.Throw: Re-throw the exception.

	OnErrorBehavior.SetDisabled: Returns disabled as a result of the evaluation.

	OnErrorBehavior.SetEnabled: Returns enabled as a result of the evaluation.

The AddEsquio method provides you a way to configure the behavior when a feature fails during evalution:

services
 .AddEsquio(setup => setup.ConfigureOnErrorBehavior(OnErrorBehavior.Throw))
 .AddAspNetCoreDefaultServices()
 .AddConfigurationStore(Configuration, "Esquio");

In the above example, the exception will be thrown if some fail happens during the evalution process.

NotFoundBehavior

There are three options to configure when a feature does not exists in the store:

	NotFoundBehavior.SetDisabled: Returns disabled as a result of the evaluation.

	NotFoundBehavior.SetEnabled: Returns enabled as a result of the evaluation.

The AddEsquio method provides you a way to configure the behavior when a feature does not exists in the store:

services
 .AddEsquio(setup => setup.ConfigureNotFoundBehavior(NotFoundBehavior.SetDisabled))
 .AddAspNetCoreDefaultServices()
 .AddConfigurationStore(Configuration, "Esquio");

In the above example, if the feature does not exists in the store, Esquio will returns disabled as a result of the feature evaluation process.

Defaults

Esquio allows to configure the Product and Deployment using specifed methods on EsquioOptions.

ConfigureDefaultProductName

Allow to configure default Product name to use, the default value is ‘default’

services.AddEsquio(setup=>
{
 setup.ConfigureDefaultProductName("default");
});

ConfigureDefaultDeploymentName

Allow to configure default Deployment name to use, the default value is ‘Tests’

services.AddEsquio(setup=>
{
 setup.ConfigureDefaultDeploymentName("Tests");
});

Scoped Evaluation

Esquio allows to cache, at scoped level (the request on ASP.NET Core), the evalution result of any feature. This reduce the number of evaluation, better performance, and improve the consistency of evaluation results on the same scope.

UseScopedEvaluation

Allow to set the use of scoped evaluation results, on ASP.NET Core the scope is the request and the results are stored on the HTTP Context Items property

services.AddEsquio(setup=>
{
 setup.UseScopedEvaluation(useScopedEvaluation: true);
});

Customize Scoped Evaluation Holder

You can override the IScopedEvaluationHolder and create your own evaluation result holder implementing the interface

public interface IScopedEvaluationHolder
{
 Task<bool> TryGetAsync(string featureName, out bool enabled);
 Task SetAsync(string featureName, bool enabled);
}

Esquio toggles

A Toggle is piece of code that defines when a feature is enabled or not. Each feature can use one or more toggles at the same time, but never more than one toggle of the same type. In Esquio you have many different toggles out of the box, and of course you can write your custom toggles.

Environment Variable

This toggle enables the feature if the value of the configured environment variable is in the list.
This environment information is provided by IEnvironmentNameProviderService [https://github.com/Xabaril/Esquio/blob/d666432f3f6fa1254dc852c7689485f1388b2da8/src/Esquio/Abstractions/Providers/IEnvironmentNameProviderService.cs#L9]. When you add Esquio to your application using AddEsquio() method, by default Esquio registers a NoEnvironmentNameProviderService [https://github.com/Xabaril/Esquio/blob/d666432f3f6fa1254dc852c7689485f1388b2da8/src/Esquio/Abstractions/Providers/IEnvironmentNameProviderService.cs#L18]. For ASP.NET Core projects, Esquio provides a method called AddAspNetCoreDefaultServices that registers by default an AspNetEnvironmentNameProviderService [https://github.com/Xabaril/Esquio/blob/d666432f3f6fa1254dc852c7689485f1388b2da8/src/Esquio.AspNetCore/Providers/AspNetEnvironmentNameProviderService.cs#L8] based on Microsoft.AspNetCore.Hosting.Abstractions.IWebHostEnvironment.

Type

	Esquio.Toggles.EnvironmentToggle

Parameters

	EnvironmentVariable: The environment variable name.

	Values: The values to activate this toggle separated by ‘;’ character.

{
 "Name": "MinutesRealTime",
 "Enabled": true,
 "Toggles": [
 {
 "Type": "Esquio.Toggles.EnvironmentToggle",
 "Parameters":
 {
 "EnvironmentVariable": "ASPNETCORE_ENVIRONMENT",
 "Values": "Staging;Production"
 }
 }
]
}

Between dates

This toggle enables the feature when current UTC date falls within the interval.

Type

	Esquio.Toggles.FromToToggle

Parameters

	From: The interval start (yyyy-MM-dd HH:mm:ss) when this toggle is activated.

	To: The interval end (yyyy-MM-dd HH:mm:ss) when this toggle is activated.

{
 "Name": "DarkMode",
 "Enabled": true,
 "Toggles": [
 {
 "Type": "Esquio.Toggles.FromToToggle",
 "Parameters":
 {
 "From": "2019-06-12 00:00:00",
 "To": "2019-06-14 23:59:59"
 }
 }
]
}

Esquio ASP.NET Core toggles

In addition to the toggles that Esquio provides out of the box, Esquio.AspNetCore provides more toggles to work with ASP.NET Core applications.

Identity Claim Value

This toggle enables its feature if the identity claim of the current user exists and its value is in the list.

Type

	Esquio.Toggles.ClaimValueToggle

Parameters

	ClaimType: The claim type name.

	ClaimValues: The claim values to activate this toggle separated by ‘;’ character.

{
 "Name": "AnimationsMatch",
 "Enabled": true,
 "Toggles": [
 {
 "Type": "Esquio.Toggles.ClaimValueToggle",
 "Parameters":
 {
 "ClaimType": "Company",
 "ClaimValues": "Contoso;ACME"
 }
 }
]
}

Client IP Address

This toggle enables its feature if the client IP address is in the list.

Type

	Esquio.Toggles.ClientIpAddressToggle

Parameters

	IpAddresses: The IP addresses to activate this toggle separated by ‘;’ character.

{
 "Name": "SecretZoneMatch",
 "Enabled": true,
 "Toggles": [
 {
 "Type": "Esquio.Toggles.ClientIpAddressToggle",
 "Parameters":
 {
 "ClaimType": "IpAddresses",
 "ClaimValues": "11.22.44.88;11.22.33.44"
 }
 }
]
}

Partial rollout by Identity Claim value

This toggle enables its feature The claim exists and its value falls within the percentage created by Esquio Partitioner.
Stickiness is based on the claim type value. Esquio uses Jenkins hash function [https://en.wikipedia.org/wiki/Jenkins_hash_function] that guarantees to the user get the same experience across many devices and also assures that a user which is among the first 30% will also be among the first 50% of the users.

Type

	Esquio.AspNetCore.Toggles.GradualRolloutClaimValueToggle

Parameters

	Percentage: The percentage of users that activates this toggle. Percentage from 0 to 100.

	ClaimType: The identity claim type used whom value is used by Esquio Partitioner.

{
 "Name": "DarkMode",
 "Enabled": true,
 "Toggles": [
 {
 "Type": "Esquio.AspNetCore.Toggles.GradualRolloutClaimValueToggle",
 "Parameters":
 {
 "Percentage": 50,
 "ClaimType": "role"
 }
 }
]
}

Partial rollout by Http Header value

This toggle enables its feature when the request header exists and its value falls within percentage created by Esquio Partitioner.
Stickiness is based on the HTTP header value. Esquio uses Jenkins hash function [https://en.wikipedia.org/wiki/Jenkins_hash_function] that guarantees to the user get the same experience across many devices and also assures that a user which is among the first 30% will also be among the first 50% of the users.

Type

	Esquio.AspNetCore.Toggles.GradualRolloutHeaderValueToggle

Parameters

	Percentage: The percentage of users that activates this toggle. Percentage from 0 to 100.

	HeaderName: The header name used whom value is used by Esquio Partitioner.

{
 "Name": "DarkMode",
 "Enabled": true,
 "Toggles": [
 {
 "Type": "Esquio.Toggles.GradualRolloutHeaderValueToggle",
 "Parameters":
 {
 "Percentage": 50,
 "HeaderName": "X-Tenant"
 }
 }
]
}

Partial rollout by Http Session Id

This toggle enables its feature if the session identifier falls within percentage created by Esquio Partitioner.
Stickiness is based on the ASP.NET Core SessionId value.

Type

	Esquio.AspNetCore.Toggles.GradualRolloutSessionToggle

Parameters

	Percentage: The percentage of sessions that activates this toggle. Percentage from 0 to 100.

{
 "Name": "DarkMode",
 "Enabled": true,
 "Toggles": [
 {
 "Type": "Esquio.AspNetCore.Toggles.GradualRolloutSessionToggle",
 "Parameters":
 {
 "Percentage": 50
 }
 }
]
}

Partial rollout by UserName

This toggle allows the current user name falls within percentage created by Esquio Partitioner.
Stickiness is based on the user name. Esquio uses Jenkins hash function [https://en.wikipedia.org/wiki/Jenkins_hash_function] which guarantees the user gets the same experience across many devices and also ensures that a user who is among the first 30% will also be among the first 50% of users.

Type

	Esquio.AspNetCore.Toggles.GradualRolloutUserNameToggle

Parameters

	Percentage: The percentage of users that activates this toggle. Percentage from 0 to 100.

{
 "Name": "DarkMode",
 "Enabled": true,
 "Toggles": [
 {
 "Type": "Esquio.AspNetCore.Toggles.GradualRolloutUserNameToggle",
 "Parameters":
 {
 "Percentage": 50
 }
 }
]
}

Http Header value

This toggle enables its feature if the request header exists and its value its in the list.

Type

	Esquio.AspNetCore.Toggles.HeaderValueToggle

Parameters

	HeaderName: The header name.

	HeaderValues: The header values to activate this toggle separated by ‘;’ character.

{
 "Name": "MinutesProgressBar",
 "Enabled": true,
 "Toggles": [
 {
 "Type": "Esquio.AspNetCore.Toggles.HeaderValueToggle",
 "Parameters":
 {
 "HeaderName": "Accept-Language",
 "HeaderValues": "en-US;es-ES"
 }
 }
]
}

Environment

This toggle enables its feature if the host execution environment and its value is in the list.

Type

	Esquio.AspNetCore.Toggles.HostEnvironmentToggle

Parameters

	Environments: The ASP.NET Core host environments to activate this toggle separated by ‘;’ character.

{
 "Name": "MinutesProgressBar",
 "Enabled": true,
 "Toggles": [
 {
 "Type": "Esquio.AspNetCore.Toggles.HostEnvironmentToggle",
 "Parameters":
 {
 "Environments": "Staging;Production"
 }
 }
]
}

Host name

This toggle enables its feature if the hostname of the client instance is in the list.

Type

	Esquio.AspNetCore.Toggles.HostNameToggle

Parameters

	HostNames: The request connection hostnames values to activate this toggle separated by ‘;’ character.

{
 "Name": "MinutesProgressBar",
 "Enabled": true,
 "Toggles": [
 {
 "Type": "Esquio.AspNetCore.Toggles.HostNameToggle",
 "Parameters":
 {
 "Environments": "mycompany.org;en.domain.com"
 }
 }
]
}

Country

This toggle enables its feature if the request country is in the list (Ip geolocation through https://ip2c.org service).

Type

	Esquio.AspNetCore.Toggles.Ip2CountryToggle

Parameters

	Countries: The request country values (two letters, ISO 3166) to activate this toggle separated by ‘;’ character.

{
 "Name": "MinutesProgressBar",
 "Enabled": true,
 "Toggles": [
 {
 "Type": "Esquio.AspNetCore.Toggles.Ip2CountryToggle",
 "Parameters":
 {
 "Environments": "ES;IT"
 }
 }
]
}

Identity Role

This toggle enables its feature if the identity role is in the list.

Type

	Esquio.AspNetCore.Toggles.RoleNameToggle

Parameters

	Roles: The identity role values to activate this toggle separated by ‘;’ character.

{
 "Name": "MinutesProgressBar",
 "Enabled": true,
 "Toggles": [
 {
 "Type": "Esquio.AspNetCore.Toggles.RoleNameToggle",
 "Parameters":
 {
 "Users": "betauser;beta"
 }
 }
]
}

Server IP

This toggle enables its feature if the host IP address is in the list.

Type

	Esquio.AspNetCore.Toggles.ServerIpAddressToggle

Parameters

	IpAddresses: The host IP adddresses to activate this toggle separated by ‘;’ character.

{
 "Name": "MinutesProgressBar",
 "Enabled": true,
 "Toggles": [
 {
 "Type": "Esquio.AspNetCore.Toggles.ServerIpAddressToggle",
 "Parameters":
 {
 "Users": "11.22.44.88;11.22.33.44"
 }
 }
]
}

User Agent

This toggle enables its feature if the request user agent browser is in the list.

Type

	Esquio.AspNetCore.Toggles.UserAgentToggle

Parameters

	Browsers: The user agents to activate this toggle separated by ‘;’ character.

{
 "Name": "MinutesProgressBar",
 "Enabled": true,
 "Toggles": [
 {
 "Type": "Esquio.AspNetCore.Toggles.UserAgentToggle",
 "Parameters":
 {
 "Users": "Mozilla/5.0;Chrome/81.0.4"
 }
 }
]
}

Identity name

This toggle enables its feature if the identity name is in the list.

Type

	Esquio.AspNetCore.Toggles.UserNameToggle

Parameters

	Users: The identity names to activate this toggle separated by ‘;’ character.

{
 "Name": "MinutesProgressBar",
 "Enabled": true,
 "Toggles": [
 {
 "Type": "Esquio.AspNetCore.Toggles.UserNameToggle",
 "Parameters":
 {
 "Users": "betauser;beta"
 }
 }
]
}

Extensibility

Esquio provides lots of toggles out-of-the-box, but sometimes that is not enough. Here, extensibility becomes a key quality attribute. If Esquio does not solve your problem, it can provide you an extensible part that would enable you to adapt it to your needs.

All main components have interfaces which are extensible. Using the inversion of control design, they can be substituted on Microsoft.Extensions.DependencyInjection configuration.

Creating your custom toggle

Supose that you need to create a toggle to enable features based on the user’s browser (User-Agent [https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent] header).

First, create a new toggle and implement the interface IToggle:

public class UserAgentBrowserToggle : IToggle
{
 public async Task<bool> IsActiveAsync(string featureName, string productName = null, CancellationToken cancellationToken = default)
 {

 }
}

IsActiveAsync returns a boolean if the feature X for the product Y is enabled or not based on this toggle. In our case, depending on the user’s browser.

To be able to specify for which browsers will be this feature enabled, you need to add a property:

public class UserAgentBrowserToggle : IToggle
{
 public string Browsers { get; set; }

 //code omited for brevity
}

If you want an application (Esquio UI [https://github.com/Xabaril/Esquio/tree/master/src/Esquio.UI]) to be able to understand these fields (and for example built an user interface to provide users a more friendly way to configure the toggles of a feature), you need to decorate the toggle with some attributes:

[DesignType(Description = "Toggle that is active depending on request browser information.")]
[DesignTypeParameter(ParameterName = Browsers, ParameterType = "System.String", ParameterDescription = "Collection of browser names delimited by ';' character.")]
public class UserAgentBrowserToggle : IToggle
{
 public string Browsers { get; set; }

 //code omited for brevity
}

Attributes

	DesignType: Allow to add a friendly description for the toggle.

	DesignTypeParameter: Allow to add a friendly description for the toggle’s parameters.

Once we have defined our attributes, it’s time to use the services that our toggle needs to determinate if it is active or not. We can specify these services in the constructor

public UserAgentBrowserToggle(
 IRuntimeFeatureStore featureStore,
 IHttpContextAccessor httpContextAccessor,
 ILogger<UserAgentBrowserToggle> logger)
{
 _featureStore = featureStore ?? throw new ArgumentNullException(nameof(featureStore));
 _contextAccessor = httpContextAccessor ?? throw new ArgumentNullException(nameof(httpContextAccessor));
 _logger = logger ?? throw new ArgumentNullException(nameof(logger));
}

Services

	IRuntimeFeatureStore: We use this service to retrieve the feature. Once we have the feature, we can retrieve the toggle and its data (The parameters and their values).

	IHttpContextAccessor: To access the HttpContext.

	ILogger<T>: To log whatever you want.

It’s time to finish our feature. We need to complete the IsActiveAsync method with the code below:

public async Task<bool> IsActiveAsync(
 string featureName,
 string productName = null,
 CancellationToken cancellationToken = default)
{
 var feature = await _featureStore.FindFeatureAsync(featureName, productName, cancellationToken);
 var toggle = feature.GetToggle(typeof(UserAgentBrowserToggle).FullName);
 var data = toggle.GetData();

 var allowedBrowsers = data.Browsers.ToString();
 var currentBrowser = GetCurrentBrowser();

 if (allowedBrowsers != null && !String.IsNullOrEmpty(currentBrowser))
 {
 _logger.LogDebug("{nameof(UserAgentBrowserToggle)} is trying to verify if {currentBrowser} is satisfying allowed browser configuration.");

 var tokenizer = new StringTokenizer(allowedBrowsers, split_characters);

 foreach (var segment in tokenizer)
 {
 if (segment.Value?.IndexOf(currentBrowser, StringComparison.InvariantCultureIgnoreCase) >= 0)
 {
 _logger.LogInformation("The browser {currentBrowser} is satisfied using {allowedBrowsers} configuration.");

 return true;
 }
 }
 }

 _logger.LogInformation("The browser {currentBrowser} is not allowed using current toggle configuration.");

 return false;
}

private string GetCurrentBrowser()
{
 return _contextAccessor.HttpContext
 .Request
 .Headers[UserAgent]
 .FirstOrDefault() ?? string.Empty;
}

Finally, we can register our custom toggle using the method RegisterTogglesFromAssemblyContaining in our Startup class:

services.AddEsquio(setup => setup.RegisterTogglesFromAssemblyContaining<Startup>())

As you can see, Esquio provides a flexible way to customize as you need.

You can see this full sample and much more in this repository [https://github.com/Xabaril/Esquio.Contrib] and of course, any PR is welcomed ;)

Configuration Store

It is the simplest way to store your Esquio configuration. However, it is not recommended for production, only for small projects or for testing purposes.

Installation

Install Esquio.AspNetCore package, typing the following command using the .NET Core CLI:

dotnet add package Esquio.Configuration.Store

or using Powershell or Package Manager:

Install-Package Esquio.Configuration.Store

or install via NuGet.

And register the specific service for this store:

public class Startup
{
 IConfiguration _configuration;

 public Startup(IConfiguration configuration)
 {
 _configuration = configuration;
 }

 public void ConfigureServices(IServiceCollection services)
 {
 services
 .AddEsquio()
 .AddConfigurationStore(_configuration);
 }

AddConfigurationStore method registers the configuration store to use, in this case, based on the default configuration system of ASP.NET Core [https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration/?view=aspnetcore-2.2]

Setting your values

So, let’s open our appsettings.json file. To help us in this task, we can use the Esquio schema, selecting it on the Schema options:

[image: ../_images/esquioschema1.png]
Add the content below to your appsettings.json file:

{
 "Esquio": {
 "Products": [
 {
 "Name": "default",
 "Features": [
 {
 "Name": "HiddenGem",
 "Enabled": true,
 "Toggles": []
 }
]
 }
]
 }
}

By default, Esquio will be the root element. However, you could change it on adding the configurationStore:

.AddConfigurationStore(_configuration, key: "MyNewCustomRoot");

Http Store

Esquio Http store connects against a Http Api that has been previously deployed on a Esquio UI.

> In samples/GettingStarted.AspNetCore.Mvc.HttpStore [https://github.com/Xabaril/Esquio/tree/master/samples/GettingStarted.AspNetCore.Mvc.HttpStore] you’ll find a full example of this store.

UI Deployment

	You need a database to store the information. For demo usage, you can use build/docker-compose-infraestructure.yaml to run a SQL image on 5433 port:

docker-compose -f ./build/docker-compose-infraestructure.yaml up

	You need also an OpenId provider. For demo usage, you can use https://demo.identityserver.io/.

On https://hub.docker.com/r/xabarilcoding/esquioui you can find Esquio UI docker images.

Docker

To run locally, pull it typing:

docker pull xabarilcoding/esquioui:3.0.0

To run this image, you have to set several environment variables, indicating some database and OpenId server properties:

docker run xabarilcoding/esquioui:3.0.0 -p 9000:80 \
 -e ConnectionStrings__Esquio=<your-connection-string> \
 -e Security__OpenId__ClientId=<openid-clientid> \
 -e Security__OpenId__Audience=<openid-audience> \
 -e Security__OpenId__Authority=<openid-authority> \
 -e Security__OpenId__ResponseType=<openid-response-type>

	Security__OpenId__ClientId: your client id (i.e. interactive.public)

	Security__OpenId__Audience: your security audience (i.e. api)

	Security__OpenId__Authority: your authority (i.e. https://demo.identityserver.io)

	Security__OpenId__ResponseType: your openid flow response type to use (i.e. code)

Kubernetes

Alternatively, you can deploy it on your kubernetes cluster in a simple way.

Save your connection string into a file:

echo '<your-connection-string>' > ./connection-string.txt

And create a secret using this file:

kubectl create secret generic esquio-ui-secret --from-file=connection-string=./connection-string.txt

Save the following yaml in a file named esquio-ui.yaml:

apiVersion: v1
kind: Service
metadata:
 name: esquio-ui-release
 labels:
 app.kubernetes.io/name: esquio-ui
 app.kubernetes.io/instance: esquio-ui-release
spec:
 type: LoadBalancer
 ports:
 - port: 80
 targetPort: http
 protocol: TCP
 name: http
 selector:
 app.kubernetes.io/name: esquio-ui
 app.kubernetes.io/instance: esquio-ui-release

apiVersion: apps/v1beta2
kind: Deployment
metadata:
 name: esquio-ui-release
 labels:
 app.kubernetes.io/name: esquio-ui
 app.kubernetes.io/instance: esquio-ui-release
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: esquio-ui
 app.kubernetes.io/instance: esquio-ui-release
 template:
 metadata:
 labels:
 app.kubernetes.io/name: esquio-ui
 app.kubernetes.io/instance: esquio-ui-release
 spec:
 containers:
 - name: esquio-ui
 image: "xabarilcoding/esquioui:3.0.0"
 imagePullPolicy: IfNotPresent
 env:
 - name: ASPNETCORE_ENVIRONMENT
 value: "Development"
 - name: CONNECTIONSTRINGS__ESQUIO
 valueFrom:
 secretKeyRef:
 name: esquio-ui-secret
 key: connection-string
 - name: SECURITY__OPENID__CLIENTID
 value: "<your-openid-clientid>"
 - name: SECURITY__OPENID__AUDIENCE
 value: "<openid-audience>"
 - name: SECURITY__OPENID__AUTHORITY
 value: "<openid-authority>"
 - name: SECURITY__OPENID__RESPONSETYPE
 value: "<openid-response-type>"
 ports:
 - name: http
 containerPort: 80
 protocol: TCP

And apply it with the command:

kubectl apply -f esquio-ui.yaml

Installation

Install Esquio.AspNetCore package, typing the following command using the .NET Core CLI:

dotnet add package Esquio.Http.Store

or using Powershell or Package Manager:

Install-Package Esquio.Http.Store

or install via NuGet.

In the ConfigureServices method of the Startup class, register the specific service for this store:

AddEsquio()
.AddHttpStore(options =>
{
 options
 .UseBaseAddress("http://localhost:1368/") //this is Esquio UI base address
 .UseApiKey("b6+KYpSY8VPMBmHLNJ00z80aPOe+Li4EGe4idoKKI1A=") // this is a Api Key on Esquio UI (only Reader permission is Required);
});

AddHttpStore method registers the http store to use. in this case, based on the default configuration system of ASP.NET Core [https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration/?view=aspnetcore-2.2]

And that’s all. Log in Esquio UI and configure your toggles as you need.

Esquio CLI

Esquio.CLI is a simple crossplattform dotnet tool that allows you to interact with Esquio UI from the command line. This tool can be used from build or release pipelines on Azure DevOps, Github Actions etc.

To install Esquio.CLI open a console window and type the following command using the .NET Core CLI:

dotnet tool install -g Esquio.Cli

[image: ../_images/esquiocli.png]
Usage: dotnet-esquio [options] [command]

Options:
 -?|-h|--help Show help information

	Commands:

	
	features

	Manage Esquio features using Esquio UI HTTP API

	parameters

	Manage Esquio parameters using Esquio UI HTTP API

	products

	Manage Esquio products using Esquio UI HTTP API

	toggles

	Manage Esquio toggles using Esquio UI HTTP API

Run ‘dotnet-esquio [command] –help’ for more information about a command.

All the commands allow to specify the uri and the api key to connect with Esquio UI, if don’t want to specify this parameters in all calls, Esquio CLI allow read this values form the ESQUIO_URI and ESQUI_API_KEY environment variables.:

$env:ESQUIO_URI="https://[esquio_uri]"
$env:ESQUIO_API_KEY="[my-api-key]"

Esquio & MiniProfiler

MiniProfiler [https://miniprofiler.com/] is a simple but effective mini-profioder for .NET. It provides a Step instrumentation that you can add to the code you want to explicitly profile. Out of the box, MiniProfiler contains plugins for profiling ASP.NET Core, EF Core. But is extensible!.

We use this extensiblity to perform profiling over Esquio feature evaluations and show the elapsed evaluation time for each feature, each toggle and also show common errors for duplicate feature evaluation or exceptions inside toggle executions.

[image: ../_images/miniprofiler.png]
[image: ../_images/miniprofilerdetails.png]

Setup

To install MiniProfiler.Esquio open a console window and type the following command using the .NET Core CLI:

dotnet package add MiniProfiler.Esquio

or using Powershell or Package Manager:

Install-Package Esquio.AspNetCore

To configure MiniProfiler.Esquio on ASP.NET Core, add MiniProfiler service configuration and new Esquio plugin with AddEsquio:

services
 .AddMiniProfiler(options =>
 {
 options.RouteBasePath = "/profiler";
 options.EnableServerTimingHeader = true;

 options.ResultsAuthorize = (_) => true;
 options.ShouldProfile = _ => true;

 options.IgnoredPaths.Add("/lib");
 options.IgnoredPaths.Add("/css");
 options.IgnoredPaths.Add("/js");
 options.IgnoredPaths.Add("/assets");

 }).AddEsquio();

Index

 _images/miniprofiler.png
Matchilndex HOMEMACHINE

(149.0ms) Sat, 02 Nov 2019 10:58:15 GMT
duration (ms) ~Esquio (ms)
hitp:/ocalnost5000/ EERS
Controlle: Match.Index 3.
Render. /Views/Matchindex.cshimi 80.6 50.0 (6!)

Esquio: 362%

clent event duration (ms)

Request I 122

) Response | f
itamet, DOM Loading 1 9

ng elit. Etiam
or vitae iaculi

share more columns show trvial

_images/miniprofilerdetails.png
Call Type
step
Duration (from start)

61.80ms

Esquio - Feature Evaluation
Render. IViews/Matcivindex.cshtml
175 ms (T+61.8 ms)

Esquio - Feature Evaluation !
Render. IViews/Matcivindex.cshtml
305 ms (T+79.5 ms)

1920 ms

Esquio - Feature Evaluation
Render. NViews/Matcivindex.cshtml
3.8 ms (T+120.2 ms)

Esquio - Toggle Execution
Render. /Views/Matcivindex.cshtml
12ms (T+131.9 ms)

Call Stack
Command

Controller: Match.Index — 34.40 ms

Proce:

nc > Start > Start > MoveNext > IsEnabledAsync

Esquio Feature Evaluation default:Matchcore

ProcessAsync > Start > Start > MoveNext > IsEnabledAsync > Start > Start > MoveNex

Esquio Feature Evaluation default:Matchcore

Render: IViews/Match/index.cshimi — 19.20 ms

Proce:

nc > Start > Start > MoveNext > IsEnabledAsync

Esquio Festure Evaluation default:Darkiode

ProcessAsync > Start > Start > MoveNext > IsEnabledAsync > Start > Start > MoveNex

OnNex

BeginFeatureEvaluatio

BeginFeatureEvaluation > Wiite > Onex

OnNex

BeginFeatureEvaluatio

aluation > Wiite > OnNex

Esquio Toggle Execution default:Darkiiode:Esquio.Toggles.GradualRolloutUserNaneToggle

_images/esquioschema.png
appsettingsjson & X

Schema: http://json.schemastore.org/esquio

_images/esquioschema1.png
appsettingsjson & X

Schema: http://json.schemastore.org/esquio

_images/rollout-blank.png
& Rollout feature with Esquio

Esquio service endpoint *

Esquio product *

Esquio feature *

_images/service-connection-form.png
Add Esquio API connection service connection

Comectonname |

o AP U o
ApiToken o
Learn More about Esquio

‘Connection: Not verified Verify connection

EA Allow all pipelines to use this connection.

_images/pipeline-assistant.png
< Esquio

% master ™ © Esquio / azure-pipelines.yml

1

% ctarter pipeline

G Show assistant

_images/rollback-blank.png
< Rollback feature with Esquio

Esquio service endpoint *

Esquio product *

Esquio feature *

_images/service-connection-verified.png
Update Authentication for Esquio

Connection name Esquio
Esquio AP Url https://esquiodemo azurewebsites.net
API Token

Learn More about Esquio

Connection: @ Verified Verify connection

_images/service-connection.png
Service connections XAML build seri

+ New service connection
‘Azure Repos/Team Foundation Ser...

Azure Resource Manager
Aaure Senvice Bus
Bitbucket Cloud

Chet

Docker Host

Docker Regitry

Esquio APl connection

_images/consoleapp2.png
:\Dev\Esquio\samples\ConsoleApp>dotnet run
lelcome to Esquio!
jarn: Esquio.DefaultFeatureService[101]

The feature Colored is not configured in the store for product Console.

_images/esquio-client-endpoint.png
@ nttps//localhost:44378/esquio?i X +
<« C 0 @ localhost44378/esquio?featureName=HiddenGem

[{"enabled":false,"name" : "HiddenGem"}]

_images/ai-web-initial.png
cC o @ localhost:44318

GettingStarted.AspNetCore.Mvc ~ Home

Welcome

Learn about building Web apps with ASP.NET Core.

_images/consoleapp.png
indows\System32\cmd.

: \Dev\Esquio\samples\ConsoleApp>dotnet run

_images/esquiocli.png
 dotnet esquio

Eeey S
(o 0) = (@) =

000--(_)--000--000" (_)--000-000-~

Usage: dotnet-esquio [options] [command]

options:
-?}-h|--help Show help information

Commands :
features Manage Esquio features using Esquio UI HTTP API
parameters Manage Esquio parameters using Esquio UI HTTP API
products Manage Esquio products using Esquio UI HTTP API
toggles Manage Esquio toggles using Esquio UI HTTP API

Run 'dotnet-esquio [command] --help' for more information about a command.

_images/setparameter-blank.png
< Set toggle parameter with Esquio

Esquio service endpoint *

Esquio product *

Esquio feature *

Esquio Toggle *

Esquio parameter *

Esquio parameter value *

nav.xhtml

 Table of Contents

 		
 Welcome to Esquio

_images/ai-request-update.png
- 9 & Da

Erer s e, ke eachcon 0 showal [Bupaae g rime orge o -

[J an |] Avaitabitity][] custom Event | [] Dependency |[] exception][] Metric |["] Page View Request][] Trace

Use the search box above, or use the search button to show all Application Insights events that occurred in the last debug session.

_images/tutorial-intro-notfound.png
C O @ localhost:44348

B

This localhost page can’t be found
No webpage was found for the web address: https://localhost:44348/

HTTP ERROR 404

_images/ai-search.png
©-0(9 =&

e [P] e o [mints

O] a1 | Avettitty |] Custom Event. |] Dependency |] Exception |] Meic |] Pageview | 7] Request | [Toce
6 0 0 0 0
B
°
a2 7o 7o s a0 e Tas 7as e 5

Results between 05/05/2020 7:32:43 and 05/05/2020 802:43. Only the most recent 250 events are available for debug sessions.

Refine by
Search Felds

b _MSProcessedyMetrice..
» Appliction verson
» AspNetCoretmironment
b Clent P adaress
» Developerbode
b Eventtime
4 FiddenGem

O e
» Node name
» Operson D
b Operstionname s
4 Prvacyresture

m
b Requestrame e
. -

E 4R Ry

@
@

5/5/2020 8:02:39 AM - Request
‘GET/lib/jquery/dist/jquery.minjs
Request URL: https:/localhost:44318/lib/jquery/dist/jauery.minjs Response code: 304 Response time: Oms

5/5/2020 8:02:39 AM - Request
(GET/lib/bootstrap/dist/js/bootstrap.bundle.
Request URL: https://localhost:44318/lib/bootstrap/ dist/js/bootstrap.bundie.mings Response code: 304 Response time: Oms

5/5/2020 8:02:39 AM - Request

@ GeT /csysecss

@ @ @

Request URL: https:/localhost:44318/css/site.css Response code: 304 Response time: Oms.

5/5/2020 8:02:39 AM - Request
GETjssitejs
Request URL: https://localhost:44318/js/site js?v=4q jwFhaPaZgréWAUSrux6hAuhOXDGIKPSIVa3610 Response code: 304 Response time: Oms

5/5/2020 8:02:39 AM - Request
(GET/lib/bootstrap/dist/css/boottrap.min.css
Request URL: https://localhost:44318/lib/bootstrap/ dist/css/bootstrap.min.css Response code: 304 Response time: Tms

5/5/2020 8:02:39 AM - Request
‘GET Home/Index
Request URL: https://localhost:44318/ Response code: 200 Response time: 38ms

_images/tutorial-intro-success.png
@ nitps//localhost:44348 x +

cC o @ localhost:44348

Hello World!

_images/token-confirmation.png
Esquio Ul

Products

Default Default Product [oren J oeiee |

_images/ai-menu-option.png
Tools Extensions Window Help | application insights search| P Esquio

- | GettingStarted AspNetCoreMVGAE~| Al Code Visual Studio

@ Application Insights Search
View > Ottier Windows > EEREMSERESE

a

as

_images/tutorial-intro-fallback.png
cC o @ localhost:44348

Hello World! , the feature is disabled and endpoint fallback is executed!

_images/worker-enabled.png
A dotnet run
info: GettingStarted.worker.Worker[@]
wWorker running with ComputeMatch Feature enabled at: 04/27/2620 @8:51:29 +02:00

_images/xabaril.png

_images/user-private-token-menu.png
Esquio Ul

Products

Name

Default

Default Product

+ ADDPRODUX

cr

Get Private token

_images/worker-disabled.png
A dotnet run
warn: Esquio[162]
The feature ComputeMatch is disabled in the store for product default.

_static/ajax-loader.gif

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

