
Esquio
Release 0.0.1

May 12, 2020





About Esquio

1 Terminology 3
1.1 Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Toggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Contributing 5

3 Pull Request Process 7

4 Code of Conduct 9
4.1 Our Pledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Our Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Our Responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.5 Enforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.6 Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Getting started with Esquio in .NET Core 11
5.1 Create a folder for your new project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Create the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.4 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.5 Test the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Getting started with Esquio in ASP.NET Core 15
6.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 ASP.NET Core Web Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.3 ASP.NET Core MVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.4 SPA and Native Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 Getting started with Esquio Azure DevOps tasks 19
7.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.3 Create Esquio API key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.4 Setup Esquio Service Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

i



7.5 Esquio rollout task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.6 Esquio rollback task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.7 Esquio set toggle parameter task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8 Behaviors 27
8.1 OnErrorBehavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.2 NotFoundBehavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

9 Esquio toggles 29
9.1 UserNameToggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.2 RoleNameToggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.3 EnvironmentToggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.4 FromToToggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.5 GradualRolloutUserNameToggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

10 Esquio ASP.NET Core toggles 33
10.1 ClaimValueToggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
10.2 GradualRolloutClaimValueToggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10.3 GradualRolloutHeaderValueToggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10.4 GradualRolloutSessionToggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

11 Extensibility 37
11.1 Creating your custom toggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

12 Esquio CLI 41

13 Esquio & MiniProfiler 43
13.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ii



Esquio, Release 0.0.1

Esquio is a Feature Toggles (aka Feature Flags) and A/B testing library for ASP.NET Core 3.0. Feature toggling is a
powerful technique that allows developers to deliver new functionality to users without changing code. Feature toggles
provide an alternative to mantaining multiple branches (aka feature branches), so any feature can be tested even before
it is completed and ready for the release. We can release a version of our product without production-ready features.
These non production-ready features are hidden (toggled) for the broader set of users but can be enabled to any subset
of testing or internal users we want to try out the features. We can even use feature toggling to enable or disable
features during runtime.

Esquio is built with the possibility of use it not only in ASP.NET Core 3.0 in mind, but making it possible to use also
in other .NET Core 3.0 projects like workers, webjobs, classlibraries, . . . almost any kind of .NET Core 3.0 project.
For the Esquio team, this is not only about using a library, but using a full Feature Toggles framework for all of our
projects, and as a delivery mechanism.

We believe Feature Toggling is, somekind, a way of delivering software, making it a first class citizen in your DevOps
processes, therefore we are working hard towards integrating it, via extension and pipelines tasks, with Azure DevOps,
so you can use Esquio Toggles directly in your releases and delivery flows. Having a full toggle delivery experience.

Esquio Azure DevOps extensions are built in top of the Esquio API, in the case you need to integrate Esquio with any
other tool, you can always use this API to handle the toggles.

Additionally, if you need it, Esquio has a full UI developed, so you can be able to handle all your Toggles in it, making
it fairly simple to use and manage.

About Esquio 1

https://martinfowler.com/articles/feature-toggles.html


Esquio, Release 0.0.1

2 About Esquio



CHAPTER 1

Terminology

The documentation and object model use a certain terminology that you should be aware of.

1.1 Product

Allows you to manage multiple different software projects, for example, one solution can contains a web application
and windows application that need the same set of features. Each product has its own unique set of features.

1.2 Feature

Features are characteristics of your product that describe its appearance, components, and capabilities. A feature is
a slice of business functionality that has a corresponding benefit or set of benefits for that product’s end user. Each
feature has its own set of toggles.

1.3 Toggle

Toggles allows you to control when a feature is enabled or not. Esquio provides many toggles out-of-the-box such us
percentage rollouts, target specific users or environments, expiration dates or even hit the ‘kill’ switch for a feature
programmatically.

1.4 Parameter

Parameters are variables that toggles need in their validation process.

3



Esquio, Release 0.0.1

1.5 Store

A mechanisim to allow you to store persistent the Esquio’s object model such us products, features, toggles, parame-
ters. Esquio provides out of the box two stores:

• ASP.NET Core JSON Configuration Provider.

• Entity Framework Core.

4 Chapter 1. Terminology



CHAPTER 2

Contributing

When contributing to this repository, please first discuss the change you wish to make via issue, email, or any other
method with the owners of this repository before making a change.

Please note we have a code of conduct, please follow it in all your interactions with the project.

5



Esquio, Release 0.0.1

6 Chapter 2. Contributing



CHAPTER 3

Pull Request Process

1. Ensure any install or build dependencies are removed before the end of the layer when doing a build.

2. Update the README.md with details of changes to the interface, this includes new environment variables,
exposed ports, useful file locations and container parameters.

3. Increase the version numbers in any examples files and the README.md to the new version that this Pull
Request would represent. The versioning scheme we use is [SemVer](http://semver.org/).

4. You may merge the Pull Request in once you have the sign-off of two other developers, or if you do not have
permission to do that, you may request the second reviewer to merge it for you.

7

http://semver.org/


Esquio, Release 0.0.1

8 Chapter 3. Pull Request Process



CHAPTER 4

Code of Conduct

4.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

4.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

9



Esquio, Release 0.0.1

4.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

4.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

4.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at
[INSERT EMAIL ADDRESS]. All complaints will be reviewed and investigated and will result in a response that is
deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with
regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

4.6 Attribution

This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, available at version

homepage

version

10 Chapter 4. Code of Conduct

http://contributor-covenant.org/version/1/4
http://contributor-covenant.org
http://contributor-covenant.org/version/1/4


CHAPTER 5

Getting started with Esquio in .NET Core

In this article, we are going to see how easy it is to use Esquio in your .NET Core application using the NuGet packages
provided by Xabaril.

> In samples/ConsoleApp you’ll find a complete Esquio example in ASP.NET Core.

5.1 Create a folder for your new project

Open a command prompt an run:

mkdir consoleapp
cd consoleapp

5.2 Create the project

To create the project type the following command using the .NET Core CLI:

dotnet new console

5.3 Installation

To install Esquio type the following command:

dotnet package add Microsoft.Extensions.DependencyInjection
dotnet package add Microsoft.Extensions.Logging.Console
dotnet package add Microsoft.Extensions.Configuration.Json
dotnet package add Esquio.Configuration.Store
dotnet restore

11

https://github.com/Xabaril/Esquio/tree/master/samples/ConsoleApp


Esquio, Release 0.0.1

or using Powershell or Package Manager:

Install-Package Microsoft.Extensions.DependencyInjection
Install-Package Microsoft.Extensions.Logging.Console
Install-Package Microsoft.Extensions.Configuration.Json
Install-Package Esquio.Configuration.Store

5.4 Setup

In the Program.cs change the Main method to async:

static async Task Main(string[] args)

Import the configuration namespace:

using Microsoft.Extensions.Configuration;

Create the configuration object:

var configuration = new ConfigurationBuilder()
.SetBasePath(Directory.GetCurrentDirectory())
.AddJsonFile("appsettings.json")
.Build();

Add a appsettings.json file to the project and add the content below:

{
"Esquio": {
"Products": [

{
"Name": "Console",
"Features": [
{

"Name": "Colored",
"Enabled": true,
"Toggles": []

}
]

}
]

}
}

Register the Esquio services and the configuration store:

var services = new ServiceCollection()
.AddLogging(configure => configure.AddConsole())
.AddEsquio()
.AddConfigurationStore(configuration, "Esquio")
.Services;

Build the service provider:

var serviceProvider = services.BuildServiceProvider();

Obtain a context for the IFeatureService:

12 Chapter 5. Getting started with Esquio in .NET Core



Esquio, Release 0.0.1

var featureService = serviceProvider.GetService<IFeatureService>();

Check if “Colored” feature for the “Console” project is enabled and set the background color of the console to blue:

if (await featureService.IsEnabledAsync("Colored", "Console"))
{

Console.BackgroundColor = ConsoleColor.Blue;
}

Finally write a message to check it:

Console.WriteLine("Welcome to Esquio!");
Console.Read();

5.5 Test the application

Test the app from your machine running:

dotnet run

To disable the feature, change the appsettings.json:

"Enabled": false

Test again the app:

5.5. Test the application 13



Esquio, Release 0.0.1

14 Chapter 5. Getting started with Esquio in .NET Core



CHAPTER 6

Getting started with Esquio in ASP.NET Core

In this article, we are going to see how easy it is to use Esquio in your ASP.NET Core application using the NuGet
packages provided by Xabaril.

> In samples/WebApp you’ll find a complete Esquio example in ASP.NET Core.

6.1 Setup

To install Esquio open a console window and type the following command using the .NET Core CLI:

dotnet add package Esquio.Configuration.Store
dotnet add package Esquio.AspNetCore

or using Powershell or Package Manager:

Install-Package Esquio.Configuration.Store
Install-Package Esquio.AspNetCore

or install via NuGet.

In the ConfigureServices method of Startup.cs, register the Esquio services:

services
.AddEsquio()
.AddAspNetCoreDefaultServices()
.AddConfigurationStore(Configuration, "Esquio");

AddEsquio and AddAspNetCoreDefaultServices methods allows you to register the set of services that
Esquio needs to works. The AddConfigurationStore method registers the configuration store to use, in this
case, based on the default configuration system of ASP.NET Core

Add the content below to your appsettings.json file:

15

https://github.com/Xabaril/Esquio/tree/master/samples/WebApp
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration/?view=aspnetcore-2.2


Esquio, Release 0.0.1

{
"Esquio": {
"Products": [

{
"Name": "default",
"Features": [
{

"Name": "Colored",
"Enabled": true,
"Toggles": []

}
]

}
]

}
}

6.2 ASP.NET Core Web Apps

When working with Esquio you can attach feature metadata to an endpoint. We do this using the route mappings
configuration fluent API RequireFeature method:

app.UseEndpoints(routes =>
{

routes.MapControllerRoute(
name: "default",
pattern: "{controller=Match}/{action=Index}/{id?}").RequireFeature("HiddenGem");

});

You can specify many features separated by comma, so you can restrict access to the endpoints if a feature or a group
features are enabled or not.

If you want more fine-grained control over your Controllers, Esquio provides a FeatureFilter attribute that forces
you to supply a comma separated list of features names. You can specifies that access to a controller or action method
is restricted to users if theses features are enabled or not:

[FeatureFilter(Names = Flags.MinutesRealTime)]
public IActionResult DetailLive()
{

return View();
}

Also, you can use FeatureFilter to act as an Action constraint. You can create two Actions with the same
ActionName and decorate one with FeatureFilter attribute to match the action only when the predefined
feature name values are enabled or not.:

[ActionName("Detail")]
public IActionResult DetailWhenFlagsIsNotActive()
{

return View();
}

[FeatureFilter(Names = Flags.MinutesRealTime)]
[ActionName("Detail")]

(continues on next page)

16 Chapter 6. Getting started with Esquio in ASP.NET Core



Esquio, Release 0.0.1

(continued from previous page)

public IActionResult DetailWhenFlagsIsActive()
{

return View();
}

Sometimes you will need to configure a fallback action. Esquio provides an AddEndpointFallback method that
accepts a RequestDelegate in order to configure your custom fallback:

services
.AddEsquio()
.AddAspNetCoreDefaultServices()
.AddConfigurationStore(Configuration, "Esquio")
.AddEndpointFallback((context) =>
{

context.Response.StatusCode = StatusCodes.Status404NotFound;

return Task.CompletedTask;
})

Out-of-the-box Esquio provides EndpointFallbackAction class that defines common fallback actions to be
used when no matching endpoints found:

• Redirect result to MVC action:

public static RequestDelegate RedirectToAction(string controllerName, string
→˓actionName)

• Redirect result:

public static RequestDelegate RedirectTo(string uri)

• NotFound status response:

public static RequestDelegate NotFound()

6.3 ASP.NET Core MVC

With ASP.NET MVC Core we can use the FeatureTagHelper inside our Razor views to show or hide Razor
fragments depending on feature is enabled or not.

<feature names="@Flags.MatchScore">
<span class="badge badge-secondary badge-pill">@match.ScoreLocal - @match.

→˓ScoreVisitor</span>
</feature>

In this example, if the feature MatchScore is enabled, you can show a new design of the match score. Names property
is comma-separated list of feature names to be evaluated. If any feature is not active, the tag helper will suppress the
content.

The FeatureTagHelper supports Include and Exclude attributes:

• Include: A comma-separated list of feature names to be evaluated. If any feature is not active, this tag helper
suppresses the content.

• Exclude: A comma-separated list of feature names to be evaluated. If any feature is active, this tag helper
suppresses the content.

6.3. ASP.NET Core MVC 17



Esquio, Release 0.0.1

6.4 SPA and Native Apps

Single-Page-Applications and native apps are becoming the new wave for modern applications. The challenge with
feature flags in these kinds of applications is handling the state transformations. In case of SPAs the changes in a
webpage’s DOM and the platform specific controls in native apps. We will need an endpoint to query if a feature or a
set of features are enabled or not in order make real time personalization in the UX for example.

To enable this endpoint, in the Configure method, insert the middleware to expose the Esquio endpoint:

app.UseEndpoints(routes =>
{

routes.MapEsquio(pattern: "esquio");
});

Now you can start your application and check out your features at http(s)://server:port/esquio?featureName=Colored:

[
{
"enabled": true,
"name": "Colored"

}
]

To disable the feature, change the appsettings.json:

"Enabled": false,

Test again the app:

[
{
"enabled": false,
"name": "Colored"

}
]

18 Chapter 6. Getting started with Esquio in ASP.NET Core



CHAPTER 7

Getting started with Esquio Azure DevOps tasks

In this article, we are going to see how to configure Esquio Azure DevOps tasks for your pipelines.

> In samples/WebApp you’ll find a complete Esquio example in ASP.NET Core.

7.1 Setup

The first step is install the Esquio Azure DevOps Task from Visual Studio Marketplace . There isn’t anything special
needed, just install it as a normal Azure DevOps extension.

Once installed, you will have new elements in your Azure DevOps:

• Esquio Service Connection

• Esquio rollout task

• Esquio rollback task

• Esquio set parameter value task

7.2 Prerequisites

To be able to use Esquio tasks, we will need to setup a Esquio Service Connection and to configure it you need to
create an Esquio API key, to use it with the Esquio Service Connection.

7.3 Create Esquio API key

First of all you need to create an Esquio API key to create the Service Connection it is easily created with the Esquio
UI.

Open your current deployment of Esquio UI url in a browser, and once logged-in, click on your user name in the upper
right corner.

19

https://github.com/Xabaril/Esquio/tree/master/samples/WebApp
https://marketplace.visualstudio.com/items?itemName=xabaril.esquio*extensions
https://docs.microsoft.com/en-us/azure/devops/pipelines/library/service-endpoints?view=azure-devops&tabs=yaml
https://docs.microsoft.com/en-us/azure/devops/pipelines/library/service-endpoints?view=azure-devops&tabs=yaml


Esquio, Release 0.0.1

Click on Get Private token and you will receive a confirmation window, and your token will be copied to the clipboard,
so note it to paste it when configuring the Esquio Service Connection

Now you can continue to configure the Service Connection.

7.4 Setup Esquio Service Connection

Service Connection are setup per project, so open your Azure DevOps settings page, and go to Service Connections,
click on New service Connection and select Esquio API Connection

This will bring the Esquio API Connection configuration screen, here you need to setup three parameters:

• Connection name: To use it in the Azure DevOps tasks.

• Esquio API Url: The complete url in which yoy have your Esquio API.

• API token: The Esquio API key you have setup.

20 Chapter 7. Getting started with Esquio Azure DevOps tasks

https://docs.microsoft.com/en-us/azure/devops/pipelines/library/service-endpoints?view=azure-devops&tabs=yaml
https://docs.microsoft.com/en-us/azure/devops/pipelines/library/service-endpoints?view=azure-devops&tabs=yaml


Esquio, Release 0.0.1

Once filled all the information, make sure it is correct, clicking on Verify connection and make sure it says Connection:
Verified

7.4. Setup Esquio Service Connection 21



Esquio, Release 0.0.1

Now you have setup the Esquio Connection we will need to use for the tasks.

7.5 Esquio rollout task

This task allow us to enable a feature to everyone cleaning all the toggles.

If you are creating your Azure Pipelines with YAML it is better to use the YAML assistant as it will allow you to use
the datasources for the picklists.

To setup the rollout task, look for Rollout feature with Esquio task:

22 Chapter 7. Getting started with Esquio Azure DevOps tasks



Esquio, Release 0.0.1

We will configure three parameters:

• Esquio Service Endpoint: Select the previously created Esquio Service Connection.

• Esquio Product: From the list of products configured in Esquio.

• Esquio feature: Select, from the list of features.

The final YAML should be (with different ids) like this:

- task: esquio-rollout-feature@1
inputs:
EsquioService: 'Esquio'
productId: '1'
flagId: '1'

If you are using the classic pipelines (the visual ones), the setup is exactly the same.

7.6 Esquio rollback task

This task allow us to set a OffToggle for a feature, thus disabling it.

If you are creating your Azure Pipelines with YAML it is better to use the YAML assistant as it will allow you to use
the datasources for the picklists.

To setup the rollout task, look for Rollback feature with Esquio task:

7.6. Esquio rollback task 23



Esquio, Release 0.0.1

We will configure three parameters:

• Esquio Service Endpoint: Select the previously created Esquio Service Connection.

• Esquio Product: From the list of products configured in Esquio, select the one with the feature you want to
setup the OffToggle.

• Esquio feature: Select, from the list of features, the one to setup the OffToggle.

The final YAML should be (with different ids) like this:

- task: esquio-rollback-feature@1
inputs:
EsquioService: 'Esquio'
productId: '1'
flagId: '1'

If you are using the classic pipelines (the visual ones), the setup is exactly the same.

7.7 Esquio set toggle parameter task

This task allow us to set a value for a particular parameter in a toggle, with this task you can setup any other type of
toggle acepting parameters.

If you are creating your Azure Pipelines with YAML it is better to use the YAML assistant as it will allow you to use
the datasources for the picklists.

To setup the rollout task, look for Set toggle parameter with Esquio task and select, using the picklists, the parameter
for the feature toggle you want to set, and then fill-in the value you want to set for the parameter:

24 Chapter 7. Getting started with Esquio Azure DevOps tasks



Esquio, Release 0.0.1

We will configure six parameters:

• Esquio Service Endpoint: Select the previously created Esquio Service Connection.

• Esquio Product: From the list of products configured in Esquio.

• Esquio feature: Select, from the list of features, the one with the parameter you want to set the value.

• Esquio toggle: Select, from the list of toggles, the one with the parameter you want to set the value.

• Esquio parameter: Select, from the list of parameters for the previously selected toggle, the one you want to
set the value.

• Esquio parameter value: Introduce manually the value you want to setup for the parameter.

The final YAML should be (with different ids) like this:

- task: set-toggle-parameter@1
inputs:
EsquioService: 'esquio'
productId: '1'
flagId: '2'
toggleId: '14'
parameterId: 'Percentage'
parameterValue: '59'

7.7. Esquio set toggle parameter task 25



Esquio, Release 0.0.1

If you are using the classic pipelines (the visual ones), the setup is exactly the same.

26 Chapter 7. Getting started with Esquio Azure DevOps tasks



CHAPTER 8

Behaviors

Esquio allows you to configure their behaviors when a feature does not exists or fails during evaluation. You can
configure these behaviors by modifying the Esquio setup.

8.1 OnErrorBehavior

There are three options to configure when a feature fails during evaluation:

• OnErrorBehavior.Throw: Re-throw the exception.

• OnErrorBehavior.SetDisabled: Returns disabled as a result of the evaluation.

• OnErrorBehavior.SetEnabled: Returns enabled as a result of the evaluation.

The AddEsquio method provides you a way to configure the behavior when a feature fails during evalution:

services
.AddEsquio(setup => setup.ConfigureOnErrorBehavior(OnErrorBehavior.Throw))
.AddAspNetCoreDefaultServices()
.AddConfigurationStore(Configuration, "Esquio");

In the above example, the exception will be thrown if some fail happens during the evalution process.

8.2 NotFoundBehavior

There are three options to configure when a feature does not exists in the store:

• NotFoundBehavior.SetDisabled: Returns disabled as a result of the evaluation.

• NotFoundBehavior.SetEnabled: Returns enabled as a result of the evaluation.

The AddEsquio method provides you a way to configure the behavior when a feature does not exists in the store:

27



Esquio, Release 0.0.1

services
.AddEsquio(setup => setup.ConfigureNotFoundBehavior(NotFoundBehavior.SetDisabled))
.AddAspNetCoreDefaultServices()
.AddConfigurationStore(Configuration, "Esquio");

In the above example, if the feature does not exists in the store, Esquio will returns disabled as a result of the feature
evaluation process.

28 Chapter 8. Behaviors



CHAPTER 9

Esquio toggles

A Toggle is code which defines when a feature is enabled or not. Each feature can use one or multiple toggles at the
same time, but never more than one toggle of the same type. In Esquio you have many different toggles out of the box,
and of course you can write your custom toggles.

9.1 UserNameToggle

This toggle allows you to enabled features to a specific set of logged in users.

Parameters

• Users: The collection of user(s) to activate it separated by ‘;’ character.

{
"Name": "MinutesProgressBar",
"Enabled": true,
"Toggles": [

{
"Type": "Esquio.Toggles.UserNameToggle",
"Parameters":
{

"Users": "betauser;beta"
}

}
]

}

9.2 RoleNameToggle

This toggle allows you to enabled features to a specific set of logged in users that belong to a specific role.

Parameters

29



Esquio, Release 0.0.1

• Users: The collection of role(s) to activate this toggle separated by ‘;’ character.

{
"Name": "MinutesProgressBar",
"Enabled": true,
"Toggles": [

{
"Type": "Esquio.Toggles.RoleNameToggle",
"Parameters":
{

"Users": "betauser;beta"
}

}
]

}

9.3 EnvironmentToggle

This toggle allows you to enabled features dependending on the environment that an application is running in. This en-
vironment information is provided by IEnvironmentNameProviderService. When you add Esquio to your application
using AddEsquio()method, by default Esquio register a NoEnvironmentNameProviderService. For ASP.NET Core
projects, Esquio provides aa method called AddAspNetCoreDefaultServices that register by default an Asp-
NetEnvironmentNameProviderService based on Microsoft.AspNetCore.Hosting.Abstractions.IWebHostEnvironment.

Parameters

• Environments: List of environments separated by semicolon you want the feature toggle to be enabled for

{
"Name": "MinutesRealTime",
"Enabled": true,
"Toggles": [

{
"Type": "Esquio.Toggles.EnvironmentToggle",
"Parameters":
{

"Environments": "Staging;Production"
}

}
]

}

9.4 FromToToggle

This toggles allows you to enabled features dependending on current UTC time.

Parameters

• From: The from date (yyyy-MM-dd HH:mm:ss) interval when this toggle is activated.

• To: The to date (yyyy-MM-dd HH:mm:ss) interval when this toggle is activated.

{
"Name": "DarkMode",

(continues on next page)

30 Chapter 9. Esquio toggles

https://github.com/Xabaril/Esquio/blob/d666432f3f6fa1254dc852c7689485f1388b2da8/src/Esquio/Abstractions/Providers/IEnvironmentNameProviderService.cs#L9
https://github.com/Xabaril/Esquio/blob/d666432f3f6fa1254dc852c7689485f1388b2da8/src/Esquio/Abstractions/Providers/IEnvironmentNameProviderService.cs#L18
https://github.com/Xabaril/Esquio/blob/d666432f3f6fa1254dc852c7689485f1388b2da8/src/Esquio.AspNetCore/Providers/AspNetEnvironmentNameProviderService.cs#L8
https://github.com/Xabaril/Esquio/blob/d666432f3f6fa1254dc852c7689485f1388b2da8/src/Esquio.AspNetCore/Providers/AspNetEnvironmentNameProviderService.cs#L8


Esquio, Release 0.0.1

(continued from previous page)

"Enabled": true,
"Toggles": [

{
"Type": "Esquio.Toggles.FromToToggle",
"Parameters":
{

"From": "2019-06-12 00:00:00",
"To": "2019-06-14 23:59:59"

}
}

]
}

9.5 GradualRolloutUserNameToggle

This toggle allows you to gradually enable features to a percentage of logged in users. Stickiness is based on the user
name. Esquio uses Jenkins hash function which guarantees the user gets the same experience across many devices and
also ensures that a user who is among the first 30% will also be among the first 50% of users.

Parameters

• Percentage: The percentage (0-100) you want to enable the feature toggle for.

{
"Name": "DarkMode",
"Enabled": true,
"Toggles": [

{
"Type": "Esquio.Toggles.GradualRolloutUserNameToggle",
"Parameters":
{

"Percentage": 50
}

}
]

}

9.5. GradualRolloutUserNameToggle 31

https://en.wikipedia.org/wiki/Jenkins_hash_function


Esquio, Release 0.0.1

32 Chapter 9. Esquio toggles



CHAPTER 10

Esquio ASP.NET Core toggles

In addition to the toggles that Esquio provides out of the box, Esquio.AspNetCore provides more toggles to work with
ASP.NET Core applications.

10.1 ClaimValueToggle

This toggle allows you to enabled features depending on the current claims of logged in users.

Parameters

• ClaimType: The claim type used to check value.

• ClaimValues: The claim value to check, multiple items separated by ‘;’.

{
"Name": "AnimationsMatch",
"Enabled": true,
"Toggles": [

{
"Type": "Esquio.Toggles.ClaimValueToggle",
"Parameters":
{

"ClaimType": "Company",
"ClaimValues": "Contoso;ACME"

}
}

]
}

33



Esquio, Release 0.0.1

10.2 GradualRolloutClaimValueToggle

This toggle allows you gradually enabled features to a percentage of logged in users. Stickiness is based on the claim
type value. Esquio uses Jenkins hash function that guarantees to the user get the same experience across many devices
and also assures that a user which is among the first 30% will also be among the first 50% of the users.

Parameters

• Percentage: The percentage (0-100) you want to enable the feature toggle for.

• ClaimType: The claim type used to get value to rollout.

{
"Name": "DarkMode",
"Enabled": true,
"Toggles": [

{
"Type": "Esquio.Toggles.GradualRolloutClaimValueToggle",
"Parameters":
{

"Percentage": 50,
"ClaimType": "role"

}
}

]
}

10.3 GradualRolloutHeaderValueToggle

This toggle allows you gradually enabled features to a percentage of logged in users. Stickiness is based on the HTTP
header value. Esquio uses Jenkins hash function that guarantees to the user get the same experience across many
devices and also assures that a user which is among the first 30% will also be among the first 50% of the users.

Parameters

• Percentage: The percentage (0-100) you want to enable the feature toggle for.

• HeaderName: he name of the header used to get the value to rollout.

{
"Name": "DarkMode",
"Enabled": true,
"Toggles": [

{
"Type": "Esquio.Toggles.GradualRolloutHeaderValueToggle",
"Parameters":
{

"Percentage": 50,
"HeaderName": "X-Tenant"

}
}

]
}

34 Chapter 10. Esquio ASP.NET Core toggles

https://en.wikipedia.org/wiki/Jenkins_hash_function
https://en.wikipedia.org/wiki/Jenkins_hash_function


Esquio, Release 0.0.1

10.4 GradualRolloutSessionToggle

This toggle allows you gradually enabled features to a percentage of user sessions (authenticated or not). Stickiness is
based on the ASP.NET Core SessionId value.

Parameters

• Percentage: The percentage (0-100) you want to enable the feature toggle for.

{
"Name": "DarkMode",
"Enabled": true,
"Toggles": [

{
"Type": "Esquio.Toggles.GradualRolloutSessionToggle",
"Parameters":
{

"Percentage": 50
}

}
]

}

10.4. GradualRolloutSessionToggle 35



Esquio, Release 0.0.1

36 Chapter 10. Esquio ASP.NET Core toggles



CHAPTER 11

Extensibility

Esquio provides lot of toggles Out-of-the-box but sometimes is not enough. Therefore extensibility is a key quality
attribute of any experience delivery architecture. Esquio does not aim to solve every problem but rather provides an
extensible parts that enables you to adapt it to your needs.

All major components have interfaces which are extensible. Following the inversion of control design they are substi-
tutable either through Microsoft.Extensions.DependencyInjection configuration.

11.1 Creating your custom toggle

Imagine that you need to create a toggle to enable features based on the user’s browser (User-Agent header).

First step is implement the interface IToggle:

public class UserAgentBrowserToggle : IToggle
{

public async Task<bool> IsActiveAsync(string featureName, string productName =
→˓null, CancellationToken cancellationToken = default)

{

}
}

IsActiveAsync returns a boolean if the feature X for the product Y is enabled or not based on this toggle. In our
case, depending on the user’s browser.

To be able to specify for which browsers will be this feature enabled, you need to add a property:

public class UserAgentBrowserToggle : IToggle
{

public string Browsers { get; set; }

//code omited for brevity
}

37

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent


Esquio, Release 0.0.1

If you want to an application (Esquio UI) be able to understand these fields and for example built an user interface in
order to provide to the users a more friendly way to configure the toggles of a feature, you need to decorate the toggle
with some attributes:

[DesignType(Description = "Toggle that is active depending on request browser
→˓information.")]
[DesignTypeParameter(ParameterName = Browsers, ParameterType = "System.String",
→˓ParameterDescription = "Collection of browser names delimited by ';' character.")]
public class UserAgentBrowserToggle : IToggle
{

public string Browsers { get; set; }

//code omited for brevity
}

Attributes

• DesignType: Allow to add a friendly description for the toggle.

• DesignTypeParameter: Allow to add a friendly description for the toggle’s parameters.

Once we have define our attributes, it’s time to use the services that our toggle will need to check if is active or not. In
the constructor we can specify these services:

public UserAgentBrowserToggle(
IRuntimeFeatureStore featureStore,
IHttpContextAccessor httpContextAccessor,
ILogger<UserAgentBrowserToggle> logger)

{
_featureStore = featureStore ?? throw new

→˓ArgumentNullException(nameof(featureStore));
_contextAccessor = httpContextAccessor ?? throw new

→˓ArgumentNullException(nameof(httpContextAccessor));
_logger = logger ?? throw new ArgumentNullException(nameof(logger));

}

Services

• IRuntimeFeatureStore: We use this service to retrieve the feature. Once we have the feature, we can retrieve
the toggle and her data (The parameters and their values).

• IHttpContextAccessor: To access the HttpContext.

• ILogger<T>: To log whatever you want.

It’s time to finish our feature. We need to complete the IsActiveAsync method with the code below:

public async Task<bool> IsActiveAsync(
string featureName,
string productName = null,
CancellationToken cancellationToken = default)

{
var feature = await _featureStore.FindFeatureAsync(featureName, productName,

→˓cancellationToken);
var toggle = feature.GetToggle(typeof(UserAgentBrowserToggle).FullName);
var data = toggle.GetData();

var allowedBrowsers = data.Browsers.ToString();
var currentBrowser = GetCurrentBrowser();

(continues on next page)

38 Chapter 11. Extensibility

https://github.com/Xabaril/Esquio/tree/master/src/Esquio.UI


Esquio, Release 0.0.1

(continued from previous page)

if (allowedBrowsers != null && !String.IsNullOrEmpty(currentBrowser))
{

_logger.LogDebug("{nameof(UserAgentBrowserToggle)} is trying to verify if
→˓{currentBrowser} is satisfying allowed browser configuration.");

var tokenizer = new StringTokenizer(allowedBrowsers, split_characters);

foreach (var segment in tokenizer)
{

if (segment.Value?.IndexOf(currentBrowser, StringComparison.
→˓InvariantCultureIgnoreCase) >= 0)

{
_logger.LogInformation("The browser {currentBrowser} is satisfied

→˓using {allowedBrowsers} configuration.");

return true;
}

}
}

_logger.LogInformation("The browser {currentBrowser} is not allowed using current
→˓toggle configuration.");

return false;
}

private string GetCurrentBrowser()
{

return _contextAccessor.HttpContext
.Request
.Headers[UserAgent]
.FirstOrDefault() ?? string.Empty;

}

Finally, we can register our custom toggle using the method RegisterTogglesFromAssemblyContaining
in our Startup class:

services.AddEsquio(setup => setup.RegisterTogglesFromAssemblyContaining<Startup>())

As you can see, Esquio provides a flexible way to customize as you need.

You can see this sample completed and much more in this repository and of course, any PR is welcome.

11.1. Creating your custom toggle 39

https://github.com/Xabaril/Esquio.Contrib


Esquio, Release 0.0.1

40 Chapter 11. Extensibility



CHAPTER 12

Esquio CLI

Esquio.CLI is a simple crossplattform dotnet tool that allow you to interact with Esquio UI from the command line.
This tool can be used from build or release pipelines on Azure DevOps, Github Actions etc.

To install Esquio.CLI open a console window and type the following command using the .NET Core CLI:

dotnet tool install -g Esquio.Cli

Usage: dotnet-esquio [options] [command]

Options: -?|-h|–help Show help information

Commands:

features Manage Esquio features using Esquio UI HTTP API

41



Esquio, Release 0.0.1

parameters Manage Esquio parameters using Esquio UI HTTP API

products Manage Esquio products using Esquio UI HTTP API

toggles Manage Esquio toggles using Esquio UI HTTP API

Run ‘dotnet-esquio [command] –help’ for more information about a command.

42 Chapter 12. Esquio CLI



CHAPTER 13

Esquio & MiniProfiler

MiniProfiler is a simple but effective mini-profioder for .NET. It provides a Step instrumentation that you can add to
the code you want to explicitly profile. Out of the box, MiniProfiler contains plugins for profiling ASP.NET Core, EF
Core. But is extensible!.

We use this extensiblity to perform profiling over Esquio feature evaluations and show the elapsed evaluation time for
each feature, each toggle and also show common errors for duplicate feature evaluation or exceptions inside toggle
executions.

43

https://miniprofiler.com/


Esquio, Release 0.0.1

13.1 Setup

To install MiniProfiler.Esquio open a console window and type the following command using the .NET Core CLI:

dotnet package add MiniProfiler.Esquio

or using Powershell or Package Manager:

Install-Package Esquio.AspNetCore

To configure MiniProfiler.Esquio on ASP.NET Core, add MiniProfiler service configuration and new Esquio plugin
with AddEsquio:

services
.AddMiniProfiler(options =>
{

options.RouteBasePath = "/profiler";
options.EnableServerTimingHeader = true;

options.ResultsAuthorize = (_) => true;
options.ShouldProfile = _ => true;

options.IgnoredPaths.Add("/lib");
options.IgnoredPaths.Add("/css");
options.IgnoredPaths.Add("/js");
options.IgnoredPaths.Add("/assets");

}).AddEsquio();

44 Chapter 13. Esquio & MiniProfiler


	Terminology
	Product
	Feature
	Toggle
	Parameter
	Store

	Contributing
	Pull Request Process
	Code of Conduct
	Our Pledge
	Our Standards
	Our Responsibilities
	Scope
	Enforcement
	Attribution

	Getting started with Esquio in .NET Core
	Create a folder for your new project
	Create the project
	Installation
	Setup
	Test the application

	Getting started with Esquio in ASP.NET Core
	Setup
	ASP.NET Core Web Apps
	ASP.NET Core MVC
	SPA and Native Apps

	Getting started with Esquio Azure DevOps tasks
	Setup
	Prerequisites
	Create Esquio API key
	Setup Esquio Service Connection
	Esquio rollout task
	Esquio rollback task
	Esquio set toggle parameter task

	Behaviors
	OnErrorBehavior
	NotFoundBehavior

	Esquio toggles
	UserNameToggle
	RoleNameToggle
	EnvironmentToggle
	FromToToggle
	GradualRolloutUserNameToggle

	Esquio ASP.NET Core toggles
	ClaimValueToggle
	GradualRolloutClaimValueToggle
	GradualRolloutHeaderValueToggle
	GradualRolloutSessionToggle

	Extensibility
	Creating your custom toggle

	Esquio CLI
	Esquio & MiniProfiler
	Setup


